
Journal of Statistical Physics, Vol. 88, Nos. 1/2, 1997 

Hydrodynamic Limit for Particle Systems with 
Nonconstant Speed Parameter 

Paul Covert 1 and Fraydoun Rezakhanlou 1 

Received October 22, 1996; final January 27, 1997 

We establish the hydrodynamic limit for a class of particle systems on Z d with 
nonconstant speed parameter, assuming that the speed parameter is con- 
tinuously differentiable in the spatial variable. If the particle system is on the 
one-dimensional lattice Z and totally asymmetric, we derive the hydrodynamic 
equation for continuous speed parameters. We obtain nontrivial upper and 
lower bounds when either the speed parameter is discontinuous or there is a 
blockage at a fixed site. 

KEY WORDS: Hydrodynamic limit; exclusion process; scalar conservation 
law. 

1. I N T R O D U C T I O N  

Recent studies by Janowsky  and Lebowitz  [ JL1,  JL2]  have focused on the 
Total ly Asymmetr ic  Simple Exclusion Process  (TASEP)  with a blockage at 
one site. This is a one-dimensional  lattice particle system in which particles 
may  only j u m p  one site in one direction, with a rate tha t  is constant ,  except 
for one site at which it is slowed. This m a y  be used as a model  for such 
diverse physical phenomena  as fluid mot ion  in a pipe with a valve, traffic 
flow on  a highway, and superionic conductors .  

In  [ J L 2 ] ,  Janowsky  and Lebowitz  use computa t iona l  methods  to 
examine the question: " F o r  a given initial particle density p, how slow may  
the j u m p  rate at the blockage be wi thout  disturbing the hydrodynamics  of  
the system?" They  compute  a numerical  approximat ion  to a funct ion 
describing this relationship. 
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In this paper, we approach that question by means of smooth 
approximations to the discontinuous jump rate function of the system with 
a blockage. To this end, we study the hydrodynamic behavior of a certain 
type of stochastic particle system, the "Processus des Misanthropes" (trans- 
lated literally "Process of Misanthropes," named with reference to the fact 
that particles in a process tend to space themselves out instead of piling 
up at a site), which includes the simple exclusion and zero-range processes 
as special cases. These systems consist of particles moving on a multi- 
dimensional lattice according to a Markovian law. Under Euler scaling, the 
microscopic particle density converges to a deterministic limit that is 
characterized as the solution of a nonlinear conservation law. 

This paper expands on a result of Rezakhanlou [ R ], who established 
the hydrodynamic behavior for these and similar processes under the con- 
dition that the jump rate between sites depends only on the distance 
between the sites and not on the absolute macroscopic spatial coordinates 
of the site of origin. In this paper, that assumption is dropped, allowing 
jump rates to depend on a continuously differentiable, bounded, and 
uniformly positive function of the form 2(u/N) ,  where N is the Euler scaling 
factor. 

The simplest process we will study, the simple exclusion process 
(hereafter called the SEP), is defined as follows: Let E denote the space of 
configurations v/=(q(u): u ~ Z  d) when v/(u) may be either 1 or 0, corre- 
sponding to the presence or absence of a particle at site u. Let p = (p(z): 
z~ 7/a) be a probability transition function (that is, p ( . )  takes only non- 
negative values and sums to 1). The generator ~N of an SEP with scaling 
factor N may then be wrritten in the form 

Y' p ( v - u )  2 (N)v/(u)(1--rl(v))(f(vlU.~)--f(vl))  (1.1) 5eXf(v/) = 
u ,  v 

for local functions f defined on the configuration space E, where v/"'v 
denotes the configuration ~/with a particle moved from u to v if possible: 

r/U'V(u) = v/(u) - 1 if v/(u) = 1, v/(v) = 0 

qu'V(v) = q(v) + 1 if v/(u) = 1, v/(v) = 0 

Vl u'~(z) = q(z)  if z # u, v 

(1.2) 

We shall also have occasion to use the generator L,e (t) defined by 
replacing the function 2 in (1.1) by the constant 1. Note that this generator 
is independent of the scaling factor N. 

The construction of this process in the case 2 -  1 is described by 
Liggett in [ Li].  
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The zero-range process (ZRP) is similar to this, except that the limita- 
tion of at most one particle per site is removed. The jump rate is then 
defined to depend on a nondecreasing function of the number of particles 
at the site of origin, as follows: Let G: N ~ [0, ~ )  be a bounded non- 
decreasing function with G(0 )=0 ,  G(1 )=  1. In this case, t/ '~ still refers 
to the configuration obtained by jumping a particle from u to v if possible, 
but the condition t l(u)= 1, t / (v)=0 is replaced by only t l(U)>0 in both 
places where it occured in (1.2). A ZRP may then be defined as one with 
generator in the form: 

L~uf(t/) = ~ p(V--U) 2 ( N )  G(q(u))(f(t/"'v) - f ( t l )  ) 
u , v  

The basic reference for this process is Andjel [A].  
The general Processus des Misanthropes (PdM) will be discussed in 

detail in Section 2. 
It is known that for any constant p in the possible range of densities 

for these processes, in the case of constant speed parameter, there is a 
unique translation-invariant equilibrium measure v p with density p. This v p 
will be a probability measure on the space of possible configurations, with 
the following properties: 

f ~_~(l)f dvP = 0 

for all local functions f,  that is, functions on the configuration space whose 
value depends only on finitely many coordinates; 

f ,7(o) vp(dq) = p 

f r , f  d v P = f  f dv p for all u ~ Z  a 

where T, is the shift operator defined by 

T,f( t /)  = f (v , r / )  

~, t l (V)=q(u+v)  for u , v ~ Z  d, t l E E  

In the simple exclusion case, v p is defined to be the product  measure 
with probability p of a particle at any given site. For  the general PdM, 
with the ZRP as a special case of it, see Section 2. 
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Because we will be using Euler scaling, we will consider the speeded 
generator NSe N for positive integers N. We will use qt to denote a con- 
figuration on which this speeded generator has acted for time t, as there 
will in general be no possibility of confusion arising from the scaling factor. 

The object of this paper is to derive the hydrodynamic equation for 
the macroscopic particle densities in the limit as N ~ ~ .  We define density 
profiles as follows: we say that a sequence pN of probability measures on 
the configuration space has density profile p, written 

[ I N ~ p  

if 

for all test functions J. 
We will be starting with a distribution p o N for the initial configuration ~/0, 

with its density profile being some bounded measurable function Po on R d. 
We assume that the measure/~oN is a product  measure such that 

vN(rl(U) = n) = vP",u(q(u) = n) 

with the sequence Pu.N satisfying 

lim fl [PtNxJ,N--pO(X)[ dx=O 
N ~  oo x[ <~k 

for every k. Here [Nx]  denotes the integer part of [Nx].  Note that if P0 
is continuous function, we choose Pu, N = p o ( u / N )  �9 Our goal will be to prove 
that the distribution of q, for later t has a density profile p(t, .), where p 
satisfies the conservation law PDE 

8,p + y .  Vx{2(x) h(p(t, x))} = 0  (1.3) 

for x ~ ~d and t/> 0, where ~ = Ez  zp(z) and h(p) is the expected flux for the 
equilibrium measure with density p. This is p( 1 - p )  for the SEP; the defini- 
tion of h for the general PdM will be given in Section 2. 

The PDE (1.3) is here understood in its distributional sense. Since dis- 
tribution solutions are not in general unique, we choose the appropriate 
solutions by means of the entropy condition 

8t [ p - c l  +~ �9 Vx{2q(p; c)} + 7- V2(x) h(c) sgn(p - c )  ~<0 (1.4) 
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for all c e R, where q(p; c) = sgn(p - c)(h(p) - h(c)). The inequalities (1.4) 
are likewise understood distributionally. Kru~kov's uniqueness theorem 
[ K ]  assures us of a unique solution of (1.3) satisfying (1.4), provided that 

lim ~ Ip(x, t ) - p 0 ( x ) [  d x = O  
t ~ o  alx I ~ k  

for all constants k. 
The work in this paper makes use of certain assumptions on the 

transition probability function p: 

Assumptions 1.1. (a) p(.) is of finite range; 

(b) p(z)  is irreducible. 

This irreducibility is necessary to make use of ergodicity and 
monotonicity arguments using coupled pairs of configurations evolving 
together. 

We are now ready to state our main result: 

Theorem 1.2. Let E N denote the expectation of the process t/t for 
t ~ [0, oo ) with t/0 distributed according to po N. Then, for any t > 0, smooth 
J of compact support, and fi > 0, 

lim g N ~ ~u J(~]th(U)-fJ(x)p(t,x)dx = 0  

where p ( t , x )  is the unique solution of (1.3) satisfying the entropy 
inequalities (1.4) and p(0, x) = po(x). 

It turns out that in the case of zero-range process, certain product  
measures are in the invariant form A ~ Because of this, the method of [ R] 
can be used directly to establish Theorem 1.2. Even when there is a blockage 
at a site, some suitable product measures are invariant. This was used by 
Landim [ L a ]  to establish the hydrodynamic limit for such models. How- 
ever in general the invariant measures are not product  measures and 
because of this the arguments of [R ]  are not directly applicable. The key 
ideas in the proof  are the following: 

(1) By means of relative entropy techniques, we can show that if 
there is a smooth solution rn of the PDE (1.4) for time t e [ 0 ,  T]  with 
re(O, x)  - po(X), then the particle densities at later times actually do match 
the values of m. This is shown in Section 4. 

(2) By arguments following those of Rezakhanlou in JR] ,  we can 
couple our process r/l to a process (~ with smooth density profile m in a 
given time interval, and show that the particle densities of q and ( satisfy 
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a microscopic version of the entropy inequalities, with the smooth func- 
tions m replacing the constants c in (1.4). This is done in Section 5. 

(3) By means of a pair of PDE lemmas, we can show that this ver- 
sion of the entropy inequality is sufficient to prove that the original entropy 
inequality (1.4) (using the constants c) also holds. This is done in Section 6, 
the arguments of which are modeled after those of KruZkov in [ K ] and of 
DiPerna in [ D ]. 

Independently of us, Bahadoran also proves Theorem 1.2 in the case of 
ASEP. As the first step, he establishes the hydrodynamic limit for the 
invariant measures. He then replaces the constant c in (1.4) with a steady 
solution of the PDE. 

Section 3 proves a preparatory lemma, a "one-block estimate," which 
will be used in Section 4. Section 7 concludes the paper by applying the 
result to obtain a partial answer to the question posed by Janowsky and 
Lebowitz for the TASEP in [JL2].  

2. THE PROCESSUS DES MISANTHROPES 

The simple exclusion and zero-range processes, described in Section 1, 
are special cases of a more general class of processes known as Processus des 
Misanthropes (hereafter called "PdM"), originally discussed by Cocozza 
[ C ]. The difference between the ZRP and the general PdM is that the ZRP 
allows jump rates between sites to depend on the number of particles only 
at the jumping-off site, while the PdM allows the rate to depend on the 
number of particles at the destination also. 

Specifically, the generator of a PdM is of the following form: 

z b(tl(U), t l ( V ) ) ( f ( t l " ' v ) -  f ( t l ) )  
u ,  v 

where b is bounded, nondecreasing in its first variable, and nonincreasing 
in its second, and has the following properties: 

b(0, m) = 0 for all m 

b( n, m )  - b( m,  n)  = b( n, O) - b( m,  0); (Gradient Condition) 

b(n, m - 1) G ( m )  = b(m,  n -  1) G(n)  (Detailed Balance Condition) 

where G s a bounded nondecreasing function on N having G(0)=0,  
G(1) = 1. 

To construct a SEP, we require that the initial configuration have at 
most one particle per site, and that b(1, 1)=0.  In this case, G(n)  is 
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undefined for n > 1, but the undefined values will not be needed in the 
"work that follows. 

To study the PdM, we will use several pieces of notation. 
Let 

for ~e[O,  sup G), let 

let 

G(n) = f l  G(i) 
i=1 

~n 
z(~)= 

.=o ~(n) 

nor 
P(~) = L 

n=O G(n)  

Note that p is a continuous, strictly increasing function of ~. Let ~(p) be 
the inverse function of p as defined above; let 

fl(p) = 1/Z(o~(p) ) 

let 

fl(P)(~(p))~ OP(n) 
G(n) 

let 

vp(,~) = I ]  op(,~(u) ) 
u 

then the product measure v p is invariant under the PdM generator if 2 = 1 
identically. 

Let 

h(p) = f b(~(u), ~(v)) v~(@) 

for u # v; let 

h(P) = I b(~(u), O) v~(@) 

(For the ZRP, h(p)=/~(p).) 
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We have: 

L e m m a  2.1 .  

Y(p) ~'(p) 
/~(p) P ~(p) 

Proof. Note that 

fl(p)(~(p))" I = Y 
.=o"" C(n) 

hence 

O= ~ d fl(p)(~(p))" 
,=o dp G(n) 

= ~ fl(p)(~(p))" Eft(p) ~'(p)] 

_if(p) ~'(p) 
fl(p-----~- + p ~(p) 

the result follows. 

We also have: 

L e m m a  2 .2 .  

Proof. 

I 

h' (p ) = h(p )( o( (p )/oc(p ) ). 

h(p) = ~ 6)P(n) 6)P(m) b(n, m) 
n , m  

if n ~> 1, then 

OP(n) O;(m) b(n, m) 

(fl(p))2(~(p)).+, 
-- b(n, m)  

G(n) G(m) 

(fl(p) )2(oc(p) )'+m b(m + 1, n -- 1) 

G(n - 1) G(m + 1) 

=OP(n -  1) OP(m+ 1 ) [ b ( n -  1, m+ 1 ) - b ( n -  1, O) +b(m+ 1,0)] 
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where for the second and third line we used the detailed balance condition 
and the gradient condition respectively. Since OP(n) OP(m) b(n, m)- is equal 
to 

OP(n - 1) OP(m + 1)[b(n - 1, m + 1) - b(n - 1, O) + b(m + 1, 0)] 

it also equals 

OP(n - 2) OP(m + 2)[ b(n - 2, m + 2) - b(n - 2, O) + b(m + 2, O) ] 

+ OP(n - 1) OP(m + 1)[ - b ( n  - 1, O) + b(m + 1, 0)]  

whenever n ~> 2. Continuing in this manner, we eventually conclude that it 
equals 

In this case, 

k = 0  

O P ( n - k )  OP(m + k)[b(m + k, O) - b ( n - k ,  0)] 

h(p)= ~ ~ ~ O'(n-k) e'(m+k)[b(m+k,O)-b(n-k,O)] 
n =  1 m = 0  k = O  

=Z OP(i) OP(J) i[b(i, O ) - b ( j ,  0)] 
i,.i 

= ~. 6)"(0 b(i, O)(i--p) 
i 

Furthermore, 

[b(i, o) o'(i)] 

= ~ b(i, O) fl(P)(~ F fl'(p) i ~ 

=~b ( i ,  O) OP(i)( i-p) oc(p) 
i 

The result follows. I 

We will also need a result concerning the Large Deviations rate func- 
tion of the invariant measures v m from the PdM with 2 = 1 and constant 
density m. 
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In the sequel, E x will denote the expectation with respect to 0 x. For m, x 
in the range of possible densities, let ~b be the microscopic entropy function 

r m) = sup [xy-Am(y)] 
Y 

with A the logarithmic moment generating function 

Am(y ) = log Em exp ny 

In the following lemma we give an exponential bound for the probability 
of a block average of v/ taking a given value. Let the block 
T : =  { - :  ..... : - 1 }  d, and let the block average Mr, q= 1/[T:I ~ , ~ r  v/(u) 
where [T:[ = (2:)  d. Then we have: 

L e m m a  2.3.  

vm(Mr:rl=[T:[)<~Emexp[--lT:[ ~ ([T--~' rn)J 

We omit the standard proof of the above lemma. See for example 
[ DZ, Chapter 2 ]. 

3. O N E - B L O C K  E S T I M A T E  

In this section, we prove a result that will be used in Section 4. It 
allows us to replace the average of a local function over a large microscopic 
block with a corresponding function of the average of the configuration 
over that block. This is done with blocks of size : in systems with scaling 
factor N, where N is sent to infinity first while : is held constant (making 
the speed function 2 approximately constant over blocks of size :). Then 
: is sent to infinity after that. 

Lemma 3.1. Let S t  N = e tN~~ be the semigroup corresponding to the 
generator N~.q "N, and write ptn =StN *p0,N where p~v is the initial measure on 
the configuration space. Let 

:o [u[ ~ k N  

Assume that p* is a limit point of {fiN}. Then, for any local f, 

f .LP(1)f d p * =  0 

where ~(~) is the generator corresponding to the process with 2 - 1. 
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Proof. 

YNfdfiN--Nd ~, ~Nfd(z_uS~*/~U) dt 
]u] ~< kN 

= - ~  E ~ ~ 
lul ~< kN 

' for = g  ~ E z.e'N~eN~Nf dp Nat 
lul ~< kN 

1 f : f d , N ~  N =N~+---- 5 ~ r ~ e  f dl~o dt 
[u[ <~ kN 

1 (;) 
N d + l  E fTu[SNf--f]d/J=o | 

lul <~ kN 

This formula tells us that limN~ ~Nfdp* =0. But, since f is a local 
function, ~ N f  converges to a constant multiple of 2,e(~)f as N approaches 
infinity. 

I .emma 3.2. For any local f and any j, 

f ( f -  zjf) dl~* = 0 

Proof. 

1 

Is 
~f~f - - ~  E 

lul <~ kN 

=o(1) 

( f -  Tjf) z_~ dp N dt 

( z . f  - z.+jf) dp N dt 

The result follows. | 

Given this, a theorem of Cocozza [C]  for the PdM tells us that 

Corollary 3.3. For any local f, 

Y fdl~* =- II fdvC y(dc) 
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where 7 is a measure on the space of possible densities and c ranges over 
that space. 

Define the microscopic block Tt(u ) to be the set { u +  v: v e Te}, and 
the block average MrAu)~/ to be 1/[Tt(u)[ ~2~T(u)t/(Z). Then we have: 

T h e o r e m  3.4. For  any bounded local f,  l e t f ( c ) =  ~fdv C. Then, for 
any smooth J and almost all t, 

lim lim J ~ [ TAu)f(tl)--f(MT~(.)tl)] = 0  

Proof. By the Ergodic Theorem, I [Mr, f (r l ) - f (MTrl)  [ dvC=O in 
the limit as Y --* oo; the same holds for/2*. Thus, as first N and then f --* o% 

N~ y ~ J ~ ]Mr, f ( t l ) - - f (Mrf l ) lz  ud/2~dt~O 

the result follows. I 

This is our one-block estimate. 

4. R E L A T I V E  E N T R O P Y  E S T I M A T E  

In this section we use a relative entropy estimate to show that, so long 
as the expected density profile obtained from the P D E remains smooth, the 
particle densities do indeed converge to that profile. The use of a relative 
entropy estimate for the hydrodynamic limit was initiated in the articles 
Yau [Y]  and Olla et al. [OYV].  

We will be working here with configurations on the periodic lattice 
77 d and with smooth functions on the d-dimensional torus Td; a natural 
coupling extends the result to configurations on Z d and density profiles 
on R d. This will be discussed further at the end of this section. 

Let r/t be generated by 

N.LpNf(rl)=N ~ 2 (N) P(V-U) b(rl(U), tl(V))(f(t/u'v) - f ( r / ) )  
u , v  

having initial measure 
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where P0 is a smooth function and O p0 is as defined in Section 2. Let 
/iN = S u ./~U, where S u is the semigroup corresponding to N ~  u. (For  the 
rest of this section, we suppress the N in the notation 5aN.) 

Suppose the PDE (1.3) has a smooth solution m on [0, T]  x T d with 
ot(m(x, t ) ) >  0 and m(0, x )=p0 (x ) ;  let v ~ =  llu69 m('' u/X)(q(U)). Choose c; let 
vC = lI, OC(q(u)), ~' t = dr,~ dye, and f ,  = dla,/dv ~. Let 5r be the adjoint of s 
with respect to v c. (The function f,(~/) solves the foward equation for the 
process.) Define the relative entropy H of a measure /~ with respect to 
another measure v on the same space by H(/~ ] v) = ~ log(d/a/dv) d/a. 

The main result of this section is: 

T h e o r e m  4.1. 

1 
lim s u p N  ~ H(12, [ v,) = 0 

The proof  proceeds by means of several lemmas. The first of these is 
due to Yau [Y] ,  and gives an upper bound for the time derivative of the 
relative entropy of/~, to v," 

L e m m a  4.2. 

dtd lN J 1 ~ _  dt~,--~l ~ -  f f +, 

Proof. By definition, H(/2, I v,) : ~ log(d/2,/dv,) d12, = ~ log(f/q/) f dvC; 
it follows that 

= O - f ~ - d , u , + N f Z * ' [ l o g ( f ) J d l 2 ,  

822/88/1-2-27 
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Now, 

:f 

:f 

- f - -  
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( j )  ~. i~.~.., i , . , l~.,  
2 p(v - u) b(~l(u), ##(v)) [ log ~s(~#<,, v) - log f ~ J  

u,  v 

u,, f(~/) ~k(r/",') 

,,, f( t /)  ~(r/",') 

f(r/)  
~ 7  ~e*~(~) d~ < 

The result follows, l 

We next calculate the adjoint operator ~ * .  

L e m m a  4 .3 .  

(u) ~*f(~l) = ~, p(v --u) 2 ~ b(~l(V), ~l(U))(fOl v'u) --f(~l)) 
u ,  v 

Y', Vx2 (N)b(~/(u) ,  0)+Na-lf (~l)RN(Yl)  7 .f(~/) N u 

where lim N R N = 0 uniformly in J?. 
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Proof. 

fg(~)..~*f(~) dvC(~) 

= ff(~)ogCg(~)dv~(q) 

u,v 

u, v 

] x dv'(q) -f(r/)g(r/)2 p(v -u )  bOl(u),q(v)) dv'(~l) 

u , v  

OC(rl(U) + 1) O'(~l(V)- 1) J 
O~(rl(U)) O'(~l(v)) f(q) b(q(u), ~l(v)) dvC(rl) 

.,. c(,~(u) + 1 

- f ( ~ )  b(~l(u), r/(v))] dvC(~l) 

From this and the detailed balance condition we deduce 

u, v 

u,v 

u,v 

u,  v 

u , v  
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We then use the gradient condition and the assumption ~ p ( v ) =  1 to 
obtain 

~v,f(~/) = ~ 2  ( U l p (v -  u)(f(~f'") - f(tl)) b(~l(v), q(u)) 
u , v  

= 2 2 N p(v - u)(f(~"") -f(rl)) b(r/(v), r/(u)) 
u , v  

. v - - u  2 u 1 

for some rN with limN rN = 0. This evidently completes the proof. | 

Our  next two lemmas deal with the two halves of the upper  bound 
obtained in Lemma 4.2: 

L e m m a  4.4 .  

1 

u M m 

with limN R N /  ---- O. 

Proof.  

0 " " "  "/ u)  ~l( u ) 
q, ,(~) = ] 7 .  oCv(u) 

o ,~(r l)  _ x. c~ , o m.,"/N)(~(u) ) 
~(~) ~ o ~","/N~(~(u)) 

= )-, Ot[ (~(m(t, u/N))) ~") fl(m(t, u/N))/C(rl(U))] 
. (o~(m(t, u /N) ) )  "~") f l (m(t ,  u /N)) /G(r l (u) )  
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(using the fact that Ore(n) = E~(m))" fl(m)]/G(n)) 

= ~ [ . , 8t~(m(t, u/N)) . 8tfl(m(t, u/N))] 
L " ~  ~ 2 - ~ , . / ~  + ~-Y~L,.V~J 

=Y'O,m t,~ ,l(u) ~(m(t,u/U)) + ~ u / U ) ) J  
u 

t u 

(by Lemma 2.1) 

= - -  m t u 7"~V~{2(N)h(m(t,N))}~ q(u)- ( ,~ ) ]  
. a(m(t, u/N)) 

_-_,. ~ [Vx~ (~),, (,, (,, ~))+~ (~)~, (m(,, ~))V~m (,, ~) 
x o~(m(t, u/N)) J 

= - 7 . ~ [ V x Z ( N ) / ~ '  ( m ( t , N ) ) + Z ( N ) h '  ( m ( t , N ) ) V ~ m ( t , N )  

[ ( ' )  ] x ~'(m(t,u/N))]~(m(t, u/N)) J Mrt(,)tl--m t , ~  +o(1) 

where for the last two equalities we used Lemma 2.2, the positivity of c~(m), 
and the fact that the factor by which t/(u) is multiplied is continuous 
in u/N. The result follows. 

Lemma 4.5. 

N d-1 f dflt- 

where lim N R~v,t = O. 
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Proofi 

~(~v,.) 1 ~(~) 

Covert and Rezakhanlou 

We have 

0 m(`' v/N)(l](1))- 1) 0 mu' u/N)(v](U)'}- 1) O~(q(v)) OC(q(u)) 
1 o m ( t ' v / N ) ( ~ ( V ) ) o m ( t ' u / N ) ( ~ ( U ) ) O c ( ~ ( v ) - - l ) O C ( ~ ( U )  + 1 )  

1 o~(m(t, u/N)) oc(c) 1 
m 

~(m(t, v/N)) 1 1 o~(c) 

(by the definition of 0 m~n)) 

o~(m( t, u/N)) 
--1 - o~(m(t, v/N)) 

_ U--VN Vx~_.~.~,u/_~)o~(m(t, u/N),.+O (N--~) 

1 ~ d l z ,  

1 (~(rf'~) 1) 

_ 1  { (~) u_v N a-I f ~ 2  p(v-u)--~.b(~l(V) ,q(u))  Vx~(m(t'u/N)) 
.,~ ot( m( t, u/m)) 

+ ~ V x 2  p(v-u) . -~--b( t l (u) ,O) dut+o(1) 
u, v 

(according to the calculation of ~(tf'")/~(t/) above, along with the fact that 
7 = E= zp(z)) 

1 { z r,~ru~ ( ( ~ ) )  - N  a i f  - 2P (Z )~ "  L \~/M~,~,~b(r/(.+zl,(.))V~log~ m t ,~ 
u , z  

=Nd_] - 2 p ( z ) - ~ .  2 h(Mrt(.)~l)V~logo~ m t, 
u,z 
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(by the one-block estimate) 

y u - Na.f~[2(N) h(M~Au,tl)Vxlogot(m(t,~)) 

The result follows. 

This prepares us for 

Proof of Theorem 4.1. 
d 1 dt N d H(12, Iv,) 

By Lemmas 4.2, 4.4, and 4.5, 

401 

- 2  ( N ) y .  V)~ log ~ (m (t, N))h' (m (t, N))[M~(.,rl--m (t, N)] 

-;F.Vx&(N)[7' (re(t, N))IMT,,~)rl--m(t, N)l)du,+o(1, 

u M --m 

1 
= :  - f  Y X(u) da,+o(1) 

u 
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We now split the integral into two cases on the value of Mr/u)~/. We do this 
in order to use the Taylor approximation Ih(M) - h ' ( m ) ( M - m ) -  h(m)[ ~< 
c(m--m) 2 for some C, since h"(M) is bounded for M less than any 
constant. As a result, 

d 1 - 1  j~r-- 
dt N a H(p, [ v,) <. ~ (MT~.)t 1 <~ sup m + l ) X(u) dpt u 

1 
f ~ ~ (MT,(~F/> sup m + 1 ) X(u) dl~, + o( 1 ) N a u 

=: g21 +g22 +o(1 ) (4.1) 

Using the Taylor approximation for h and/~, 

1 f ~ { _ , ( M r , ( ~ F l , s n p m + l  ) 

• 1 7 6 1 7 6  ) 

+ 7. V~.2 (N) /~ (m (t, N ) ) ] +  C 1 (MrAu)q--m (t, N))  2) dpt 

.< 1 ~'~2.,~-~ f Z ~(Mr~(u)rl>supm+ 1) 
u 

x{y'Vxl~ 

+Y'V: ,~ . (N)[a ' (m( t ,N)) ) (MT/~)~l -m( t ,N))du ,  

1 
Na f ~ ~(Mr~(.)q > sup m + 1) 

u 

x{"V x l~176  
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for some C~. Hence the left-hand side of (4.1) is less than 

Ndf~I(MT~(, )q<<.supm+I ) 2 7.Vxm t, o~(m(t,u/N)) 
u 

+ ~-y ~ (MTf(,)q--rn t, cl~, 
u 

((")) 1 u h' t,-~ +~-y  7 . V x l o g ~  m t , ~  2 m 
u 

(bounding ~(Mr~(,)t /-m(t,  u/N)) by (MT~(,)rl--m(t, u/N)) 2 in the second 
term and ~(Mr~(,)t / > sup m + 1) by (Mr~( , )q-  re(t, u/N)) 2 in the third) 

u 

+ ~  ~Z~(Mr~.q>supm+l)y .V~{2( . )h(m( t , - ) ) }  d/~, 
u 

�9 C2 

<~--~ fZT'Vx{2(')h(rn(t,'))} ~ /~, 
u 

C 3 

(for some Ca and C 3 applying Lemma 2.2 to the first term and using the 
fact that all the factors by which ( M - m )  2 is multiplied in the last two 
terms of the pevious expression are bounded). 
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The first 
approximates 
follows that 

term inside the integral vanishes as N ~  o% since it 
an integral of the exact derivative ~.Vx{2.f~(m(t, .))}. It 

limNsu p 1 d ~7 ~ H(p,I v,) 

~< limsup limNsup C3~ ~ (M~Au, rl-- m (t,N))2dp~ 

~<limsuplimySUp Card ~b (MTA~)~I, m (t,N))dp t (forsomeC4) 

since the microscopic entropy function ~b, defined in Section 2, is uniformly 
convex. By Lemma 4.6 below, this is bounded by lim sup: lim SUpN C3/N 
H(#t [v,); by Gronwall's Inequality, the result follows. 

It therefore remains only to show 

Lemma 4.6. 

limsup limNsu p f ~ ~ ~b m 

2 
~<limsUPu N n(/~,lv,) (4.2) 

Proof. By the entropy inequality, 

- -  m u d 
N d  u 

<~-~d H, Ptlv~)+-~log f exp [ l ~ r m 

We must show that the latter term is bounded above by zero in the limit. 
Let {uj} be chosen so that {T~(uj)} covers Z a disjointly; let 

1 
m 
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for z e T~. We then have 

ldl~162 

=-~-21~ dvt 

1 1 1 
<~Na IT~[ ~zlOg f exp(ITr Xz) dv,=: IT, I ~ O~ 

by the convexity of f~-~ log ~ exp fdv,. Moreover, for each z 

Qz=~-yl logfexpIlTtl~(b(Mr~(uj+z)rl, 

1 (Mr~%+z)r/, (t ' -NalOgf Hjexp[lTcl~) m ~ f ) ) ] d v  t 

1 ~logfexp[lTclrk(MrAuj+z)thm(t, uL~f))ldvt N d j (4.3) 

since v, is a product measure. Set mj = re(t, (uj + z)/N) and let v,.j and v~'J 
denote the restriction of measures vt and vmj to the block T~(Ui + z). From 
(4.3) and Schwartz inequality we obtain 

Oz..~2Nd~lOgfex p m 
)2 

1 ~ l o g  "J dv"J 
j 

(4.4) 

Since m is smooth, it is not hard to show that the second term on the right- 
hand side of (4.4) is of order O(fa/Nd). Hence 

-< 1-~--~logflrCr  (t ,  12z"~2Na j vSoeXpIlT~[(b(i-~l ,m ~ ) ) ]  

x v'~J (MrAuj+z)q k 

(since v t is a product of measures O "~('' u/N), each of which is within order 
fiN of 0 m(t' ,/N). The measure v m(t' u/N) is a product of this latter measure). 
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We must now calculate vm(MyI = k / [  T~[). But by Lemma 2.3, we have 

k 

Therefore, the left-hand side of (4.2) is bounded above by 

limsu.l msu.sup  f2 0ox. 

~dl ~ N  d } 
= limsup limNsu p log(IT t I + 1 ) = 0 

This concludes the proof of Lemma 4.6. 
From this relative entropy estimate, we may now reach our desired 

conclusion about the particle density profiles of the process: 

Theorem 4.7 (Periodic Version). Suppose (1.3) has a smooth solu- 
tion m on [0, T] •  a for which ~(m)>0;  then a periodic process with 
initial density profile m(0, x) will have density profile re(t, x) at later times 
t~[0 ,  T]. 

Proof. By Lemma 4.6 and Theorem 4.1, 

l i m s u p l i m s u p l  1 ( ( u ) )  t 
u 

according to the uniform convexity of ~b, 

for some C, and so 

lim sup lim sup f 1 ~ (  ( N ) )  2 ~o~ N~o~ ~ MTl{u)rh-m t, d/2, -- 0 

From this it follows that the process t/, with law /~N does indeed have 
density profile re(t, u/N). | 
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This result further extends to 

T h e o r e m  4.7 (Nonperiodic Version). Suppose (1.3) has a smooth 
solution m on [0, T] x Nd for which ~(m) > 0. Then a PdM with initial 
density profile m(0, x) will have density profile re(t, x) at later times 
te[O,  T]. 

Proof. This is because, since particles are propagated with finite 
speed with probability 1, Lemma5.7 of [R]  tells us that for any macro- 
scopic box of length (for example) �89 in each spatial dimension, we can 
couple a periodic process to a non-periodic one in such a way that no dis- 
crepancies appear in that box for some fixed positive time independent of 
the location of the box. Thus the particle densities match m(t, x) in any 
box of that size for some positive time; piecing together boxes, we draw the 
same conclusion for all of ~a; and by repeating the argument, we find that 
the result holds for the whole time interval [ T~, T2]. 

5. MONOTONIClTY AND MICROSCOPIC ENTROPY 
INEQUALITY 

In this section, we use the monotonicity property of the PdM to derive 
a certain microscopic version of Kru~kov's entropy inequality for the 
process V/l. 

The idea behind monotonicity is this: we can couple together two 
PdM's having the same generator in such a way that the number of 
discrepancies between the processes (that is, the sum 5Zu Iq(u)-~(u)l  for 
the processes (q, ~)) cannot increase over time as the generator acts on the 
processes. The generator ~ N  is defined for a pair of configurations (t/, ~) as 
follows: 

~Nf (q ,  ~) 

= y ' p ( v - u )  2 {[b(rl(u),rl(v))/x b(~(u),~(v))](f(rlU'V,~ ) - f ( t / , ~ ) )  
u , v  

+ [ b(r/(u), t /(v))-b(rl(u ), rl(v)) A b(~(u), ~(v))](f(t/~'', ~ ) -  f(t/ ,  r 

+ [b(~(u), ~(v))-b(~l(u), l?(v))/x b(~(u), ~(v))](f(t/, ~u, . ) - f ( t / ,  if))} 

When 2 is identically one, the generator is denoted by ~(~). 
Le t  5 7 be the space of invariant measures under the generator ~(~), 

and let ~ be the space of measures that the shift-invariant on the space of 
pairs of configurations. Note that the coupled generator restricted to either 
process in isolation reduces to the ordinary PdM generator. 
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We note that the same argument that proved our original Lemma 3.1 
also proves 

I . e m m a  3.1 (Coupled Version). Let ~N be the semigroup corre- 
sponding to the generator N~ N. Let f iN= ~ N . / . / g  where ~N t , /~0 is the initial 
measure on the space of pairs of configurations. Write 

fiN--Nd+l Z z.fi~dt 
lul ~<k 

let p* be a limit point of {/2N}. Then, for any local f ,  

fr 
This lemma will be used in proving the main result of this section, 

which is 

T h e o r e m  5.1. Let m be a smooth solution of (1.3) on [T~, T2] 
with 0~(m)> 0; let ~/, be generated by the ordinary PdM generator NffC 
Then 

lim liminfl.tN{ff2 1 ~ ( N )  ( N )  s N~o~ - ~  8,.J s, Mv~.)~ls-m s, ds 

+ff2~-d~),.1 VxJ(S,N) q(MT,(,,)q~; 

Proof. The proof is sketched because it is very similar to the proof 
of Theorem 3.1 of [ R]. (We assume without loss of generality that T~ = 0, 
T2--T.) By Theorem 4.7, the function m can be obtained as the density 

N profile of a Markov process (, generated by N~9~, initially distributed as v 0 
,v is as in the previous section. Let ( q ,  (t) be a coupled process with where v o 

initial distribution/tNx v N, generated by NY.  Denote the law of this pro- 
cess by fiN. Choose a test function J; choose a constant T >  sup{supp, J}. 
Following [ R], one can readily arrive at 

l i m / ~ U { f :  1 ~ ( N )  N - ~  ~t J l, ]~]t(U)--~t(g)] 

where H(q, ~)= Zz zp(z)(b(((O), ((z))-b(r/(O), ~l(Z)))(Fo, z(~l, ~)- Fo.z((, r/)) 
and F,, v(q, () = 1 ~(,) >/~(,,). ~(~) >/r 
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Again, as in [R] ,  we can use Lemma 5.1 to replace I~ , (u) -L(u) l  by 
[Mr~(u)r/,- Mr~(.)(t[ and zuH(rl,, (,) by q(Mr,(.)r/,; Mr,( .)( t)  in the above 
statement. For the former we need somthing like 

lim l im in fE  [~7~a ~(~l,(u)>>.fi),(,(u)>>.fi = 0  (5.1) 
~ N ~  [ N  

to allow us to replace It /(u)-  ((u)l with the uniformly bounded function 

Iv(u) - ff(u)l ~(q(u) <~ ,  ~(u) < ~ )  

The statement (5.1) is a straightforward consequence of Chebyshev's 
inequality and the integrability of P0. Finally we apply Theorem 4.7 to 
replace Mrt  with m and this completes the proof. | 

6. PDE L E M M A S  A N D  PROOF OF T H E O R E M  1.2 

In this section, we will supply the missing link in our proof of 
Theorem 1.3 by means of the concept of measure-valued solutions, as 
presented by DiPerna [D] .  For each (t, x) in [0, oe)• ~d, let rot. x be a 
measure on [0, or). We then define ~r to be a measure-valued solution of 
(1.3) if the following holds: 

f [c~tJ(t, x ) k +  VxJ(t ,  x) 2(x) h(k)] nt, x(dk) dx dt = 0 

for all test functions J. 
We approach the definition of a measure n corresponding to the pro- 

cess t/, as follows: we first define the Young measure nu/( t ,  dx; dk) by 

G(x'k)  z cN '~ ( t ' dx ;dk )=~  ~ -N'MT~ (")rlt 

We then use the correspondence between t/t and ~zN/(t, .; .) to define 
inductively the associated probability measures RU/(t ,  dx; dk). 

The sequence R x /  is tight, passinf to the limit first in N and then 
in f. Let R be any limit point. Then, R-almost surely, there exists a family 
of measures n t, x( dk ) with n ,.x( dk ) dx = n( t, dx; dk ). (See [R] ,  Lemma 5.5.) 

We can translate our previous results into the language of measure- 
valued solutions using the fact that nt.x is the limiting probability distribu- 
tion of microscopic block particle densities near point x at time t. For 
example, Theorem 5.1 is equivalent to the following: 



410 Covert  and Rezakhanlou 

Theorem 5.1 (Restated). Let m(t, x) be a smooth solution of (1.3) 
in [T~, T2] with e ( m ) > 0 .  Then, for any test function J with support in 
(T1, T2), 

f O,J(t, x) Ik-  re(t, x)l + 7. VxJ(t, x) 2(x) q(k; re(t, x))} ~z,.x(dk) dx dt >~ 0 

with probability 1 according to the measure R. 
To this end, we first prove a pair of PDE lemmas concerning measure- 

valued solutions. 

Lemma 6.1. Suppose that 

f [O,J(t, x) Ik -re(t, x)l + ~. VxJ(t, x) 2(x) q(k; re(t, x))]  zc,,x(dk ) dx dt ~ 0 

for all smooth solutions m of the PDE (1.3) on [T1, T 2 ] x T  d with 
e(m) > 0 and all test functions J supported on the interior of that domain. 
Then, for all constants c o and all test functions J of compact support, 

f [OtJ(t, x) I k -  %1 + ~" VxJ(t, x) 2(x) q(k; Co) 

- J ( t , x )  sgn(k-co)~.V2(x)h(co)]rc,.~(dk)dxdt>.O (6.1) 

Proof. Note that it suffices to establish (6.1) for constants Co with 
~(Co) >0;  the inequality (6.1) in the case 0~(Co) is established by approxi- 
mation. Choose a constant Co with ~(Co)>0. For  every positive So, let 
m(t, x; s) be such that ~(m) > 0 and for s ~ (So - 6, s o + 6) 

m(s, x; s) = Co for x ~ 7 a 

m(t,x;s) a s m o o t h s o l u t i o n o f ( 1 . 3 ) f o r  t~(So-6,  So+6) 

For sufficiently small 6 such m exists and depends smoothly on s. (This 
can be done, since m is composed of solutions to characteristic ODE's.) 
Let H be a mollifier function on E (that is: H smooth, H>~0, I H =  1, 
supp H bounded); let H~(z) = (l/e) H(z/e). Let J':(t, x; s) = J((t + s)/2, x) 
H~((t--s)/2) where J is a smooth function with support in (So-6, 
So + 6) - ~-d. 

Since m ( . , . ; s )  is a smooth solution, our supposition leads to 

I [a,J'(t, x; s) Ik-m(t ,  x; s)l 

+y.V~J~(t,x;s) A(x)q(k;m(t,x;s))]lr,.x(dk)dxdtds>~O (6.2) 
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Furthermore, 

f2~ := f c3,J'(t, x; s) Ik -m( t ,  x; s)l ~t.x(dk) dx dt ds 

l ( ~ - ,  x) H~ x; s)l ds dx dt = f ~ ( 0 t J )  ( ~ f - ) l k - m ( t ,  zet, x(dk) 

+f~  _ / t + s  x)  -m( t ,  sx;s)ldsre,. 

We integrate by parts for the ds-integral in the second term to get 

f ( a , J )  x H ~ ]k-m(t ,x;s) l  dsrc, x(dk) dxdt \ 2 '  

+g f (o,J) k ~ - , x ) H ~  Ik--m(t,x;s)ldsrc,.x(dk)dt 

-JS~--~,xC / , + s  )H~(~_)sgn(k_m(t ,x;s) ,Osm(t ,x;s)dsze , .x(dk)dxdt  

We let e goes to zero. As a result, 

s'2~ = 2 f (a,J)(t,  x) Ik - c01 rc,.x(dk) lim dx dt 

- -  2 f J(t, x) s g n ( k -  Co) Osm(t, x; t) n,,x(dk) dx dt 

On the other hand, since m(s, x; s) = Co, we have Vxm(s, x; s) = 0 and 

a,m(s, x; s) = -O,m(s, x; s) = Y" Vx(2(x) h(m(s, x; s) )) 

because m(-, .; s) is a solution to (3.1). Thus the limit of the first term in 
(6.2) equals 

2 f (O,J)(t, x) Ik- col n,,~(dk) dx a t -  2 f J(t, x) sgn(k - Co) Vx2(x) h(c ~ 
(6.3) 

It is not hard to see that the limit of the second term in (6.2) equals to 

2 7 �9 V~J(t, x) 2(x) q(k; Co) zc,,x(dk) dx dt 

This and (6.3) combined with (6.2) complete the proof of lemma. 

822/88/1-2-28 
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Having begun with an enropy inequality comparing n,,~(dk) to 
smooth solutions re(t, x) and derived another one comparing it to con- 
stants Co, we next use this result to compare n,.x(dk) with any distribution 
solution p( t, x). 

L e m m a  6.2. Suppose that for all test functions J with support in 
(0, T) • T a and all constants Co the inequality (6.1) holds; then for all dis- 
tribution solutions p of the PDE (1.3) on [0, T]  • ~-d; 

f [a,J(t, x) Ik -p( t ,  x)[ + 7" VxJ(t, x) fl(x) q(k; p(t, x)) ]  zt,,x(dk) >>. dx dt 0 
(6.4) 

Proof. For this result, we will be using mollifiers even more extensively. 
Define J~(t, x ,s ,y)  =J((t  +s)/2, (x + y)/2) H~((t--s)/2) H~( (x -y ) /2 )  
where H" is as in the proof of Lemma 6.2 and H~d(Z) = lid= 1 H~(zi) �9 We 
certainly have 

7"(Vxq-VY)Je(t'x's'Y)=7"(VxJ)( t-I-S2 ' x2Y)Ht:(~)Hed(~-~) 
(6.5) 

Moreover, 

[O,J(t, x) Ik -p ( t ,  x)l + 7" VxJ(t, x) fl(x) q(k; p(t, x))]  ~,,x(dk) dx dt 

= lim ~ OtJ H~ [k-p( t ,  x)[ 
~ 0 2  2 ' 

( t + s  x 2 Y ) H , C _ ~ _ f _ ) H ~ ( ~ . _ y ) 2 ( x ) q ( k ; p ( t , x ) )  1 + 7 . V x J  2 ' 

• n,.x(dk ) dy ds dx dt 

1 + 7 - V x J \  2 ' 

x zc,,x(dk ) dy ds dx dt (6.6) 
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where the second equality follows from the fact that both [k-z[ and 
q(k; z) are Lipshitz functions in z and that 

lim f 8 ,J (  t+s  x 2 Y  ) H~ ( ~ - f - ) H ~ ( ~  -y-) lp(t ,x)-p(s,y)[ 
~ o  2 ' 

x zrt, x(dk) dy ds dx dt= 0 (6.7) 

In fact (6.7) is a consequence of ~ dzcx,,(dk ) = 1, the fact that 

lim Ip(t + fl, x + o 0 -- p(t, x)[ dx dt= 0 
~x, f l ~ O  ix l<~M 

and the bounded convergence theorem. From (6.5) we deduce that the 
right-hand side of (6.6) equals to 

f 2d+l lim [(a,+Os) J~(t ,x ,s ,y) lk-p(s ,y) l  

+ 7" (Vx + Vy) J~(t, x, s, y) ,~(x) q(k; p(s, y))] ~t,x(dk) dy ds dx dt 

= 1 !imof[C3tJ~(t,x,s,y)[k_p(s,y)[ 2d+ 1 

+ 7. VxJ~(t, x, s, y) 2(x) q(k; p(x, y))]  n,,x(dk) dy ds dx dt 

1 
+T;-r !~  f [esJ~(,, x, s,y)[k-p(s,y)[ 

+ 7" VyJ~( t, x, s, y) 2(y) q(k; p(s, y))] ~t,x(dk) dy ds dx dt 

1 
+ ~ !im ~ f 7' VyJ~'( t, x, s, y)(2(x) - -  2(y)) q(k; p(s, y)) 

x zc,,x(dk ) dy ds dx dt 

(rearranging the terms) 

1 lim fJ~(t ,x ,s ,y)[sgn(k-p(s,y))h(p(s,y))]7.V2(x) 
~ > ~  ~o  

• zc,,~(dk) dy ds dx dt 
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+ ~  s, y)[sgn(p(s, y) - h(k)] Y" 

• dy ds dx dt 

1 t" 

+ ~ !~o J ~ vyJ~(t' x, s, y)(~(x) - ~(y)) q(k; p(s, y)) 

• zc,,x(dk) dy ds dx dt 

=:  g21 +s  +s 

using the entropy inequality (6.1) on the first term and (1.4) on the second. 
It is not hard to show 

s + 02 = f h(t, x) sgn(k-p( t ,  x))(h(p(t, x)) -h (k ) ) y .  V2(x) ~zt, x(dk ) dx dt 

(6.8) 

In fact for every Lebsegue point (t, x) of p, we have 

1 I 2 e+' ~olim J~(t ,x ,s ,y)[sgn(k-p(s ,y))h(p(s ,y))]?~.V2(x)dyds 

f J(t, x) sgn(k - p ( t ,  x)) h(p(t, x)))~. VX(x) (6.9) 

Using (6.9) and the bounded convergenge theorem, one can readily estab- 
lish (6.8). 

Moreover 

s ~ y .  ( V x J )  �9 - ' 2 H e H ~  

x (,t(x) - ,~(y))  q(k; p(s, y))]  ~,,x(d~:) dy as dx dt 

- im x y) 
x (2(x)  --  f l (y))  q(k; p(s, y ) ) ]  ~Zt, x(dk ) dy ds dx dt 

=: g231 +~32 
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Since 2 ( x ) - 2 ( y )  vanishes as x approaches y, it is not hard to show that 
g?3l = 0. On the other hand, 

  o 'lim 1 (2) 
x (2(x) --)l,(y)) q(k; p(t, x))]  ZQx(dk) ely ds dx dt 

1 f ( t + ,  x 2 y )  ( ~ _ ) ( V H } ) ( 3 _ ~ )  + l i m  ~a-g5 Y" J H~ 
~ o  2 ' 

x (2(x) - 2(y))[q(k; p(s, y) - q(k; p(t, x))]  rc,.x(dk ) dy ds dx dt 

= :  ~321 -~ ~'~322 

Moreover, since q is Lipschitz and 2 is continuously differentiable, 

If2322[~<c~ f J ( t + s  x 2 Y )  ' 

x Ip(s,y)-p(t,x)l  ~,,x(dk)dydsdxdt=O 

because zy. VH~z/2)=e aG(z/e) for some compactly supported smooth 
function G and p(t, x ) -p(s ,  y) vanishes as (t, x) approaches (s, y). Hence 

1 f f232 = - lira ~ y. Vy[J~(t, x, s, y) q(k; p(t, x))](2(x)  - 2 ( y ) )  
e ~ 0  

x ~x,,(dk) dy ds dx dt 

+lira  1 f ( t+s  x2J( )H~@~_f_)H}(~y_)  ~ + o ~ g 7 5 y .  (VJ) 2 ' 

x (2(x) -- 2(y)) q(k; p(t, x)) zQx(dk ) dy ds dx dt 

1 f = -,~01im ~ y. Vy[J~(t, x, s, y) q(k; p(s, y))] (2(x)  - 2(y)) 

x zQ~(dk) dy ds dx dt (6.10) 
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because 2 ( x ) -  2(y) vanishes as x approaches y. From (6.8) we deduce 

(21 _t_~Q2=!im0 1 I Jr(t' x, s, y) q(k, p(t, x))7. V;t(y) ztt,x(dk ) dy ds dx dt 

This and (6.10) imply 

1 f OI + ['22 -t- ~3 - - - -  - -  lim ~ 7" Vy[J'( t, x, s, y)(2(x) - 2(y))  q(k; p(t, x))]  
e.~0 

x rc,,Adk) dy ds dx dt 

If we integrate with respect to y first, we evidently get zero. The result 
follows. 

From this result, there follows 

C o r o l l a r y  6.3. ~ Ik -p( t ,  x)l rc,.~(dk) dx is nonincreasing in t, for 
t > 0 .  

Proof. First, we assume that p and zc has bounded support in the 
space variable. (Note that if it does so initially, the same is true for all time. 
In (6.6), we choose a test function J(t, x) which is constant within the 
spatial support of p for each t. In this case, the term in (6.4) with V~J is 
identically zero, and so (6.6) reduces to 

f c3tJ(t, x) I k -  p(t, x)l rct.x(dk) dx dt >~O 

letting J approximate ~ (t e [ T1, T2] ), we get 

i { Ik -p(T1 ,  x)l -  I k - p ( T 2 ,  x)l} rc,,x(dk) dx>~O 

in other words, the integral of I k - P l  is nonincreasing in t. 
For  general p, we choose a sequence p~ of compactly supported func- 

tions which are equal to p on [0, T] x [ - k ,  k] d. Similarly, we set up a 
sequence of processes I/I k) with initial density profile pk(0, .). Then we 
couple q(k) with t/, and note that for some fixed positive time, with 
probability 1, no discrepancies between the two enter into [ - N ( k - 1 ) ,  
N(k-1)]d .  Similarly, for some positive time, no discrepancies between p 
and p~ enter into [ - k +  1, k -  1] d. 

This tells us that, for some positive time, the integral of I k -  Pl is non- 
increasing in t on [ - k +  1, k - 1 ]  d. But we can cover all on R d by shifted 
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versions of this box, and so the same is true on Nd for some fixed positive 
time. Finally, if it is true for some positive time, we can treat a later profile 
as a new initial profile and start over, so that the 

Finally, we come to the 

Proof of  Theorem 1.2. We can find a smooth function p~ with 
[po(x)-p~o(X)[ dx<e.  Let p" be the distribution solution of (1.3) with 

initial condition p; .  Then, using Corollary 6.3, 

f l k - p ' ( t ,  x)l rct.x(dk) d x < e  

for almost all t > 0. Since p" converges to p in Ll-sense, we conclude 

lim f [k-po(X)[ rc,,x( dk ) dx=  lim f I k -  p(t, x) l rC,,x( dk ) dx 
t ~ O  t ~ O  

= lim lim f [k-p~(t ,  x)[ rct x(dk) dx 
t ~ O  ~ : ~ 0  

= 0  

This and Corollary 6.3 imply that zct. x = Op(t,~) for all t, x. 
Theorem 1.2 is hereby proved. 

7. APPLICATION TO TASEP WITH BLOCKAGE 

In this section, we prove a result that allows us to obtain a partial 
answer to the question of Janowsky and Lebowitz [JL2]:  What is the 
threshold 2 above which a lowered jump rate at the origin does not disturb 
the hydrodynamic limit for the system? 

In fact, we will do more than this, finding a hydrodynamic limit for 
the process with continuous but nondifferentiale 2, and obtaining non- 
trivial upper and lower bounds for the case with 2 piecewise continuous. 
We will work in one dimension, with the assumption that p ( -  1 )=  1, that 
is, the particles jump only one site to the left. This assumption is essential 
for the results of this section. It allows us to compare the particle densities 
for processes with different jump rates. 

We shall begin by assuming that our initial data po~L 1 r~L ~. As 
before, let p(t, x) be the unique solution of (1.3), (1.4); then define r(t, x) = 
~x p( t, y) dy. In this case, 

Otr(t, x) -- 2(x) h(axr ) = 0 
(7.1) 

If p is the entropy solution of (1.3), we say that the corresponding r 
is the viscosity solution of (7.1). 
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This function r will give the macroscropic densities for the process 
(t(u) = ~ =  _~ v/t(v), where v/, is a PdM under the assumptions described 
above. Let r 0 be its initial data, which have ro(x ) = ~ x  Po(Y) dy. 

By coupling a process with jump rate 21 to one with rate 22, where 
21 ~< 22 everywhere, with each process having the same initial configuration, 
we find that the coupled process always has particles in its sub-process 
farther to the left than the corresponding particles in the sub-process 
with 21. In other words, letting ((1) and r] corresponding to the 21 process 
as described above and ((2) and r 2 to the process with 22, we find that 
((1)(u) ~< ((2)(u) almost surely, and thus that rl(t, x)<~ rE(t, X). 

We also make the assumption that the flux function h is stictly con- 
cave. We are primarily interested in the SEP case, for which h(p)= 
p(1 - p ) .  

For  a PDE in the form of (7.1), we may use the Hopf -Lax  Formula 
[ES] ,  a standard result in PDE theory: 

L e m m a  7.1 (Hopf-Lax Formula). Let r be the viscosity solution of 
(7.1); then 

r(t, X)=winf x{ro(w(O)) + f~ L(2(w(s)), og'(s)) ds) (7.2) 

where L(2, q) is the Lagrangian defined by L(2, q) = SUpp{pq + 2h(p)}, and 
where ~r = {we CI[0, T]:  w(t)=x}. 

Note that - h  is convex and positive, and that L is nondecreasing in 2. 
Moreover, since h (0 )=  0, we clearly have L ~> 0. 

For  the process with 2 piecewise continuous and equal to its right or 
left limit at each discontinuity, it is sufficient to consider 2 with only one 
discontinuity, occurring at the origin. Denote the upper semicontinuous 
version by 2 + and the lower semicontinuous by 2 . 

We may now choose a sequence of smooth functions 2 + ~ 2  + 
pointwise. Let r + be the viscosity solution of (7.1) with 2+; then r~ + is a 
nonincreasing sequence of functions. 

Similarly, we choose a sequence of smooth functions 2,7 increasing 
to 2 - .  We let r~  be the viscosity solution of (7.1) with 2~-, and find that 
the sequence r~- is increasing. 

Each r + is clearly an upper limit for the hydrodynamic limit of the 
process with jump rate 2, and each r,~- is similarly a lower limit. If we can 
find conditions in which these sequences converge to the same function, we 
will have found a hydrodynamic limit for the process with 2. We now 
pursue this approach to the problem. 
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Lemma 7.2. Let 

r+(t, x)=winf (ro(w(O)) + f~ L(2 +(w(s)), w'(s)) ds} 

Proof. 

Then 

lim r+(t,x)=r+(t,x) 
n ~  

We note first that, since 2 § ~< 2~ + and since L is nondecreas- 

and so 

lim r+(t, x) < ro(w(O)) + nlim L(A~+(w(s)), w'(s)) ds 

We may pass to the limit in the right side by bounded convergence, 
which tells us that 

f2 lira r~+(t, x) ~ro(w(O)) + L(X+(w(s)), w'(s)) ds 

But since this is true for any w, 

mf Iro(w(O)) + ftL(2~o w'(s)) ds} lira r+(t, x) <~ , i +(w(s)), 
n ~ c~(3 t ,x ~ 

which equals r+(t, x) by definition. 

419 

ing in its 2 variable, 

<<-w~nf, x{ro(w(O"+ f~L(2+(w(s'),co'(s))ds}=r+(t,x) 

On the other hand, for any w e ~r,x, 

r+( t, x) <<. ro(W(0)) + f t  L( 2 +~ (w(s) ), Wr(S)) ds 
Jo 
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There is also a corresponding result for the function r~" 

Lemma 7.3. Let 

r (t,x)= inf (ro(w(O))+ ~tL(2-(w(s)),w'(s))ds) 
w c "~/;,x (. o 

Then 

lim r~-(t, x) = r (t, x) 
n ~ o:3 

Proof. Again, since 2 -~>2s  and since L is increasing in its 2 
variable, 

r(t, X) = w!nf ,,x f ro(w(O) ) + ;oL(2+(w(s) ), co'(s) ) ds) 

~> inf  x{ro(w(O)) + fo L(2.+(w(s)), co'(s))ds}=r:(t,x) 

We now concentrate on the opposite inequality. Let W ~'~ denote the 
space of functions on [0, T] that are weakly differentiable with an 
integrable derivative. For this, we recall a standard fact from analysis: 

k e m m a  7.4. Given a positive function ~b with ck(q)/lql ~ ~,  if a 
sequence of functions {w,} has ~'o~b(w',(s))ds uniformly bounded, then 
{w,} is equicontinuous in [0, t]. 

The proof of the lemma will be given later. 
For any n, we choose a function Wn with 

r~(t, x) + In >>" ro(w.,(0)) + io L(2~(w.(s)), w'.(s)) ds 

Then the sequence {w,} satisfies the conditions for equicontinuity in 
Lemma 7.4, using ~b(q)=L(c0, q) where Co is a lower limit for the range 
of )~. Since { w,} is therefore equicontinuous, we can find a uniform limit w 
of some subsequence { wk,}. Since the r, is nondecreasing, it has a unique 
limit point, and so it suffices to find the limit of rk,. Because of this, we 
may henceforth treat {w,} as converging uniformly to w. Moreover, the 
sequence ~ b ( w ' ) d s  is uniformly bounded. Since the function ~b grows 
faster than the linear function, the sequence w~, is uniformly integrable. 
Hence the sequence w~, converges weakly to an integrable function v. This 
implies that w is weakly differentiable and v = w'. 
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Also, for a fixed function g(s), it will show that 

lim inf L(g(s), w'n(s)) ds >~ L(g(s), w'(s)) ds 

To see this, recall the definition of L. Since w', converges weakly to w', 
for any bounded measurable function p, 

liminf fo' L( g, w'.) ds >~ liminf fs [p(s)w'n(s)+ g(s) h(p(s) ) ] ds 

-- [p(s)  w'(s) +g(s) h(p(s))]  ds 

We not set p(s) = pk(s) = Pk(g(s), w'(s)) where P~(g, q) denotes the unique 
maximizer of 

sup (pq +gh(p)) 
P: IPl <~k 

(Uniqueness follows from the strict concavity of h.) Hence by the Monotone 
Convergence Theorem, 

liminf fo L(g, w')ds>~lim fo [p~w' +gh(pk) ] ds 

fo = L(g ,  w'n) ds 

We now proceed with the problem. Since w~ ~ w uniformly, each 2n is 
continuous, and 22"[2 , for fixed k and large n we have 2 (w,)>~ 
2 k (w)-  1/k everywhere. Therefore, for any k, we have 

liminfn~ L(2;(wn(s))w'n(s))ds>~liminfn~ L 2;(w(s))-~c,w'n(s ds 

, _1_ w'(~)) d~ >IoL("~;(w(~)) k' 

(by lower semicontinuity); 

liminf L(2~(w~(s)) w'.(s)) ds~>liminf L 2~-(w(s))- , w'.(s) ds 
n ~ o o  k ~ o o  

' _1 w'(s)~ ds >foL(2k(W(S)) ~, / 
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(by Fatou's Lemma) 

= ~ L(~-(w(s)), w'(s)) 

Now, it is also true by uniform convergence that r0(w,(0)) ~ ro(w(0)). 
Therefore, 

lim rs x) >~lim infr0(wn(0)) + L(2s w',(s)) ds 
17 ~ ~ n ~ o o  

~>liminfr0(w(0)) + L(2-(w(s)) ,  w'(s)) 

t> inf r0(w(0)) + L(2-(w(s)) ,  w'(s)) ds 
w E 

=r ( t ,x)  

The result follows. 
We continue with the proof of Lemmas 7.4. 

Proof of  l_emma 7.4. Without loss of generality, we may assume 
~b(q) = Iql J(q) where J(ql) ~<J(q2) if Iq~r ~< Iq21, and lim j(q) = + ~ as Iql 
goes to infty. Suppose t 2 1> tl. We then have 

f t2 ds fo [wn(t2)--Wn(tl)[ = W'(S) <.l(t2--t~)+ IW'(S)[ ~(IW'(S)[ >>-l) ds 
"1 

f~ (~(w'(s)) ~(Iw'(s)l <<./)as = l(t2 - tl) + j(w'(s)~) 

<~l( t2- t l )+j (1)  ~ f~ (~(w')ds 

for every positive l. If F ( t 2 -  l 1 ) denotes the infimum of the right-hand side 
over l, it is not hard to show that l im6_oF(~)=O.  This evidently com- 
pletes the proof. | 

From Lemmas 7.2 and 7.3 we obtain the following corollaries, which 
give us information about the density profiles in certain cases: 

Corollary 7.5. Suppose 2 is piecewise continuous; then the measure 
rc,,x is concentrated on the interval [r (t, x), r+(t, x)] R-almost surely. 
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Proof. By coupling with the processes with speed ).~-, we find that 
the expected values of ( are at least r~(t, x), and thus, passing to the limit, 
at least r-( t ,  x). Similarly, by comparison with the processes with rate ).+, 
the expected values can be no more than r+(t, x). The result follows. 

Corollary 7.6. Suppose 2 is continuous; then 7rt, x(dk)=fir(t,x~ 
R-almost surely (see the discussion at the beginning of Chapter 6 for zr 
and R; here we define rc using the summation process ~ instead of t/ as 
before), where r(t, x) is as defined by (7.2). 

Proof. If 2 is continuous, then the definitions of r + and r coincide, 
and by Corollary 7.5, the result follows. I 

We next return our attention to the question concerning the blockage 
at a single point. We will approximate this case using piecewise constant 
functions 2,. We do not have an exact hydrodynamic limit in this case. 
However, we make use of the fact that the convexity of L(2, q) in q for 
fixed 2 allows us to simplify the Hopf 's  Formula expression when 2 is 
piecewise constant. In this case, the infimum in Hopf 's  Formula may be 
taken over piecewise linear functions w which are linear over each interval 
with 2 constant. This is true because the convexity of L tells us that if 
2(w(s)) is constant for s in some [ t l ,  t2], then, by Jensen's inequality, the 
integral of L(2(w(s)), w'(s)) over that interval is greater than or equal to 
( t  2 - -  t l )  L ( ) , ,  ( W ( t 2 )  - -  W(t l ) ) / ( t  2 --/1))" 

The results of this section are also true with the condition p o o L  ~ 
dropped. To see this, choose a bounded measurable P0 and compare it by 
coupling with truncated versions of itself; since the speed of propagation of 
particles is finite, we have arbitrarily large regions over which there are no 
discrepancies between the coupled processes, and the hydrodynamic limit 
for the truncated version will be the limit for the non-truncated version 
also. (For  P0 r L1, it is necessary to define r differently; we will use r(t, x) = 
~ p(t, x). This does not mterially affect the relationship between p and r in 
the sense that, if p is an entropy solution of (1.3), r is still a viscosity solu- 
tion of (7.1).) 

This allows us to obtain our lower bound for the threshhold ). of 
blockages that do not affect the hydrodynamics of the process with block- 
age at the origin. Consider the process with constant initial density Po; let 
ro(x) = xpo. Let r be the entropy solution of (7.1) with initial data r o. Let 
z~,,x be as in the previous Corollaries, for the process with rate 1 away from 
the origin and 2o at 0. Let r( t ,x)  be the entropy solution of (7.1) with 
initial data r0 and 2--- 1. Then we have: 

T h e o r e m 7 . 7 .  Assume h ( p ) = p ( 1 - p )  in (7.1) and suppose 
2o ~> 4h(po); then ~zt. x = 6r(t,x), R-almost surely. 
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Proof. Let 2n be a sequence of continuous functions increasing 
pointwise to 2, where 2 ( 0 ) = 2  o and 2 - 1  elsewhere. Let rn(t,x ) be the 
entropy solution of the PDE (7.1) with 2n. Then the reasoning of 
Lemma 7.3, followed exactly, tells us that 

;t } 
lim rn(t,x)= inf ro(w(0)) + L(2(w(s)), w'(s)) ds | 

n ~  c o  w e  gV~,x { " 0 

Now, the convexity of L for fixed 2 tells us that it is sufficient to con- 
sider the infimum over the set ~ . x  of piecewise linear functions on [0, t] 
with terminal point x. This infimum is actually a minimum, since L 
increases quadratically in its second variable and everything else involved 
only increases or decreases linearly, and so large values of w' only increase 
to(W(0)) + j ;  I4,~(w(s) ), w'(s) ) ds. 

What we need to prove is that the minimizing w ~ ~ spends no time 
at the origin. Suppose w(s)= 0 for some s, and let to be the last time for 
which this is true. Then w also minimizes ro(w(0)) + j~0 L(2(w(s)), w'(s)) ds 
among piecewise linear functions on [0, to] with terminal point 0. Hence 
without loss of generality we may assume t - - to .  

What  we are trying to show, then, is that the minimizer of 

ro( - ( t - s )z )  + ( t - s )  L(1, z) + sL(2o, 0) 

over z and s (where z represents the slope of w away from the origin and 
s represents the time spent at 0) has s = 0 .  Set k(q)=L(1, q). Then 
L(2, q ) =  2k(q/2) and ro(X ) =pox, the expression to be minimized equals 

-poZ( t -  s) + ( t - s )  k(z) + s2ok(0) 

= (t - s)( -poz  + k(z)) + s2ok(0) 

In the SEP, h(p)=p(1-p) ,  and k(q)=l ( l+q)  2. Thus we are 
actually minimizing 

( t - s )  - p o z +  ( l + z )  2 +~,~o (7.3) 

over z and s. We first minimize over z for fixed s: 

s 1 + z ) )  d { ( t - s )  (-PoZ +~ (l + z)2)+-~ 2o}=( t - s )  ( -Po  +~(1 

either s=t  or (1 + z ) = 2 p o ;  z =  - 1  +2po.  
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Assume s ~ t .  In this case, k ( z ) = � 8 8  (7.3) then 
reduces to 

s s 
(t -- s)(po(1 - 2po) + P~) + ~ 20 = ( t - -  s) h(po) + ~ 20 

Clearly the case t = s leads to the same minimum value. Finally, we mini- 
mize oer s, and discover that it has a minimum at s = 0 because 20 > 4h(p0). 

F rom this we conclude that the Hopf 's  Formula minimizer w is a 
straight line. (It spends no time at zero, and by convexity it must have the 
same slopes on the left and right if it crosses the origin.) In order words, 

lim rn( t , x) --- infro(X-- tz) + tL(1, z) 
n ~  o o  z 

But this is also the expression for the solution r r of the PDE with 
2 = 1. Since r,,(t, x)  ~ rr x)  pointwise, and since the process with block- 
age 20 at 0 is trapped between the two, we conclude that its particle 
densities are the same as if there were no blockage at all. This completes 
the proof  of Theorem 7.7. 

Here, then, is a upper bound for the Janowsky-Lebowitz threshhold. 
It should be noted that there is still room for improvement in the study of 
this question; the simulations in [ JL2]  showed that values of 20 lower than 
this can still avoid disturbing the hydrodynamics of the process. In fact, the 
threshold value obtained in [ JL2]  is strictly less than 4h(po) for every 
poe(0 ,  1). 
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